

Advanced Mechanics of Materials

Course will emphasize

- WHAT are the basic theories and techniques of mechanics of materials with emphasis on underlying principles and limitations?
- · WHAT can they do?
- · HOW will they do it?

Advanced Mechanics of Materials

Prerequisites:

- Basic (undergraduate) course in strength of materials (or solid mechanics)
- Knowledge of matrix notation and matrix manipulations

Advanced Mechanics of Materials

Matrix Notation:

- Introduce exceptional conciseness and transparency of the mathematics
- Simplify the calculations and allow systematic development of concepts

Advanced Mechanics of Materials

Grade Based on:

- · Assignments (homework)
- Final exam (take-home exam)
- Honor system

Course Outline

- Introduction and definitions
- Kinetics, kinematics of deformation and constitutive relations
- Failure theories
- Symmetrical and unsymmetrical beam bending
- Shear stresses and shear flow
- Torsion of bars
- Stability of beams
- Beams on elastic foundations
- Curved beams

Introduction and definitions Axial Loading

